Ito Formula for an Asymptotically 4-stable Process Krzysztof Burdzy

ثبت نشده
چکیده

An Itô-type formula is given for an asymptotically 4-stable process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Processes Have Thorns

Let X(t) be the symmetric α-stable process in Rd, α ∈ (0, 2), d ≥ 2. For f : (0, 1) → (0,∞) let D(f) be the thorn {x ∈ Rd : x1 ∈ (0, 1), |(x2, . . . , xd)| < f(x1)}. We give an integral criterion in terms of f for the existence of a random time s such that X(t) remains in X(s) +D(f) for all t ∈ [s, s+ 1).

متن کامل

An Annihilating –branching Particle Model for the Heat Equation with Average Temperature Zero

We consider two species of particles performing random walks in a domain in R with reflecting boundary conditions, which annihilate on contact. In addition there is a conservation law so that the total number of particles of each type is preserved: When the two particles of different species annihilate each other, particles of each species, chosen at random, give birth. We assume initially equa...

متن کامل

Stochastic Differential Equations Driven by Stable Processes for Which Pathwise Uniqueness Fails

Let Zt be a one-dimensional symmetric stable process of order α with α ∈ (0, 2) and consider the stochastic differential equation dXt = φ(Xt−)dZt. For β < 1 α ∧ 1, we show there exists a function φ that is bounded above and below by positive constants and which is Hölder continuous of order β but for which pathwise uniqueness of the stochastic differential equation does not hold. This result is...

متن کامل

Ju n 20 07 On pathwise uniqueness for reflecting Brownian motion in C 1 + γ domains ∗ Richard F . Bass and Krzysztof Burdzy

Pathwise uniqueness holds for the Skorokhod stochastic differential equation in C 1+γ-domains in R d for γ > 1/2 and d ≥ 3.

متن کامل

Variation of Iterated Brownian Motion

which we will call “iterated Brownian motion” or simply IBM. It can be proved that Z uniquely determines X and Y (see Burdzy (1992) for a precise statement). A Law of Iterated Logarithm for IBM is also proved in Burdzy (1992). We consider IBM to be a process of independent interest but there exists an intriguing relationship between this process (strictly speaking its modification) and “squared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005